739 research outputs found

    Variability of maximum and mean average temperature across Libya (1945-2009)

    Get PDF

    A dynamic, climate-driven model of Rift Valley fever

    Get PDF
    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information

    UK COVID-19 lockdown: 100 days of air pollution reduction?

    Get PDF
    On the 23 March 2020, a country-wide COVID-19 lockdown was imposed on the UK. The following 100 days saw anthropogenic movements quickly halt, before slowly easing back to a “new” normality. In this short communication, we use data from official UK air-quality sensors (DEFRA AURN) and the UK Met Office stations to show how lockdown measures affected air quality in the UK. We compare the 100 days post-lockdown (23 March to 30 June 2020) with the same period from the previous 7 years. We find, as shown in numerous studies of other countries, the nitrogen oxides levels across the country dropped substantially (∼ 50%). However, we also find the ozone levels increased (∼ 10%), and the levels of sulphur dioxide more than doubled across the country. These changes, driven by a complex balance in the air chemistry near the surface, may reflect the influence of low humidity as suggested by Met Office data, and potentially, the reduction of nitrogen oxides and their interactions with multiple pollutants

    Weather-based forecasting of mosquito-borne disease outbreaks in Canada.

    Get PDF
    Early warning systems to predict infectious disease outbreaks have been identified as a key adaptive response to climate change. Warming, climate variability and extreme weather events associated with climate change are expected to drive an increase in frequency and intensity of mosquito-borne disease (MBD) outbreaks globally. In Canada, this will mean an increased risk of endemic and emerging MBD outbreaks such as West Nile virus and other MBDs. The availability of timely information on the risk of impending MBD outbreaks has important public health implications, by allowing implementation of mosquito control measures and targeted communications regarding the need for increased personal protective measures-before an outbreak occurs. In Canada, both mechanistic and statistical weather-based models have been developed to predict West Nile virus outbreaks. These include models for different species of mosquitoes that transmit West Nile virus in different geographical areas of Canada. Although initial results have been promising, further validation and assessment of forecasting skill are needed before wide scale implementation. Weather-based forecasting for other emerging MBDs in Canada, such as Eastern equine encephalitis, may also be feasible

    Impact of ENSO 2016-17 on regional climate and malaria vector dynamics in Tanzania

    Get PDF
    Large scale modes of climate variability, including the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), have been shown to significantly impact mosquito-borne diseases in the Tropics, including malaria. However, the mechanistic cascade from ENSO and the IOD, to induced changes in regional climate and ultimately mosquito abundance and behaviour is poorly understood. Mosquito population dynamics, behaviour and their potential to transmit disease are all sensitive to micro-climatic conditions. The warm phase of ENSO (El Niño) tends to be associated with increased precipitation and outbreaks of various vector-borne diseases, while the cold phase (La Niña) can cause drought during the short rains over East Africa. The sensitivity of Anopheles mosquito population dynamics and host-seeking behaviour to ENSO and to the resulting micro-climatic conditions, were investigated in the Kilombero Valley in Tanzania. From June 2016 to September 2017, changes in the timing and intensity of the rainy seasons and temperature due to the ENSO 2016–17 were observed. Mosquitoes were collected using Centres for Disease Control and Prevention (CDC) light traps indoors and mosquito electrocuting traps in- and outdoors. Changes in abundance and biting behaviour of Anopheles arabiensis and Anopheles funestus were correlated with climate and micro-climate. The impacts of El Niño on climate and mosquito abundance were not clear. However, the study area experienced a drought due to La Niña during which both vector species declined significantly. An. arabiensis densities stayed more stable at higher temperatures and were found in higher numbers outdoors with respect to An. funestus. For both species, indoor temperature and season determined their host-seeking location, with higher temperatures and the wet season driving them outside. The study confirmed the influence of ENSO and micro-climate on malaria vector abundance and host-seeking behaviour, generating hypotheses for predicting the impact of future ENSO on malaria risk and vector control. Our observation of higher outdoor biting during warmer conditions indicates that indoor vector control strategies may become proportionally less effective during this time

    Prédictions des éclosions de maladies transmises par les moustiques selon les prévisions météorologiques au Canada

    Get PDF

    The UK’s suitability for Aedes albopictus in current and future climates

    Get PDF
    The Asian tiger mosquito Aedes albopictus is able to transmit various pathogens to humans and animals and it has already caused minor outbreaks of dengue and chikungunya in southern Europe. Alarmingly, it is spreading northwards and its eggs have been found in the UK in 2016 and 2017. Climate-driven models can help to analyse whether this originally subtropical species could become established in northern Europe. But so far, these models have not considered the impact of the diurnal temperature range (DTR) experienced by mosquitoes in the field. Here, we describe a dynamical model for the life cycle of Ae. albopictus, taking into account the DTR, rainfall, photoperiod and human population density. We develop a new metric for habitat suitability and drive our model with different climate data sets to analyse the UK’s suitability for this species. For now, most of the UK seems to be rather unsuitable, except for some densely populated and high importation risk areas in southeast England. But this picture changes in the next 50 years: future scenarios suggest that Ae. albopictus could become established over almost all of England and Wales, indicating the need for continued mosquito surveillance

    The effect of temperature, farm density and foot-and-mouth disease restrictions on the 2007 UK bluetongue outbreak

    Get PDF
    In 2006, bluetongue (BT), a disease of ruminants, was introduced into northern Europe for the first time and more than two thousand farms across five countries were affected. In 2007, BT affected more than 35,000 farms in France and Germany alone. By contrast, the UK outbreak beginning in 2007 was relatively small, with only 135 farms in southeast England affected. We use a model to investigate the effects of three factors on the scale of BT outbreaks in the UK: (1) place of introduction; (2) temperature; and (3) animal movement restrictions. Our results suggest that the UK outbreak could have been much larger had the infection been introduced into the west of England either directly or as a result of the movement of infected animals from southeast England before the first case was detected. The fact that air temperatures in the UK in 2007 were marginally lower than average probably contributed to the UK outbreak being relatively small. Finally, our results indicate that BT movement restrictions are effective at controlling the spread of infection. However, foot-and-mouth disease restrictions in place before the detection and control of BT in 2007 almost certainly helped to limit BT spread prior to its detection

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
    corecore